Transcriptomics does not show adverse effects of β-carotene in A/J mice exposed to smoke for 2 weeks
- authored by
- Emmanuelle Kuntz, Jürgen Borlak, Georges Riss, Claude Pierre Aebischer, Heinrich Bachmann, Nicole Seifert, Petra Buchwald Hunziker, Dörte Sölle, Willi Hunziker, Regina Goralczyk, Karin Wertz
- Abstract
β-Carotene (βC) supplementation in smokers was unexpectedly associated with increased incidence of lung cancer versus smoking alone. We performed a study in A/J mice to explore possible βC/cigarette smoke (CS) interactions potentially influencing lung cancer risk in smokers. A/J mice received a diet containing 120 or 600 ppm βC for six weeks, and exposed to mainstream CS (140 mg total suspended particulates/m3) during the last two weeks. Lung transcriptomics analysis revealed that CS induced drug metabolism, oxidative stress, extracellular matrix (ECM) degradation, inflammation markers, and apoptosis. βC reduced CS-induced inflammation markers and ECM degradation. βC modulated the CS effect on apoptosis without a clear pro- or anti-apoptotic trend. βC alone induced only minor changes of gene expression. In conclusion, βC/CS interactions caused gene regulations in lungs. CS was the main effector. The gene regulations overall did not indicate that βC exacerbated CS effects. Dose-dependency of βC effects was minor and not detectable by genome-wide data mining.
- External Organisation(s)
-
DSM Food Specialties
RCC Ltd.
Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)
Herbonis AG
Frimorfo
- Type
- Article
- Journal
- Archives of Biochemistry and Biophysics
- Volume
- 465
- Pages
- 336-346
- No. of pages
- 11
- ISSN
- 0003-9861
- Publication date
- 15.09.2007
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Biophysics, Biochemistry, Molecular Biology
- Sustainable Development Goals
- SDG 3 - Good Health and Well-being
- Electronic version(s)
-
https://doi.org/10.1016/j.abb.2007.06.034 (Access:
Closed)