On the equilibrium concentration of boron-oxygen defects in crystalline silicon
- authored by
- Dominic C. Walter, Robert Falster, Vladimir V. Voronkov, Jan Schmidt
- Abstract
We determine the equilibrium concentration of the BO defect in boron-doped Czochralski-grown silicon after prolonged (up to 150 h) annealing at relatively low temperatures between 200 and 300 °C. We show that after sample processing, the BO concentration has not necessarily reached the equilibrium state. The actually reached state depends on the detailed temperature profile of the last temperature treatment before the light-induced degradation (LID) is performed. For the investigated Cz-Si materials with base resistivities ranging between 0.5 and 2.5 Ω cm, we observe that an annealing step at 200 °C for 50 h establishes the equilibrium, independent of the base resistivity. Experiments performed at different temperatures reveal that the equilibrium defect concentration decreases with increasing annealing temperature. This observation can be understood, assuming a mobile species which is distributed between at least two different sinks. A possible defect model is discussed.
- Organisation(s)
-
Institute of Solid State Physics
- External Organisation(s)
-
Institute for Solar Energy Research (ISFH)
- Type
- Article
- Journal
- Solar Energy Materials and Solar Cells
- Volume
- 173
- Pages
- 33-36
- No. of pages
- 4
- ISSN
- 0927-0248
- Publication date
- 12.2017
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Surfaces, Coatings and Films
- Sustainable Development Goals
- SDG 7 - Affordable and Clean Energy
- Electronic version(s)
-
https://doi.org/10.1016/j.solmat.2017.06.036 (Access:
Closed)