Analysis of spatio-temporal pattern formation in a PEM fuel cell with Pt/Ru anode exposed to H2 /CO mixtures

authored by
Sebastian Kirsch, Richard Hanke-Rauschenbach, Kai Sundmacher
Abstract

Abstract
In 2005 Zhang and Datta published a model for describing autonomous potential oscillations in a Pt/Ru -catalyst-polymer electrolyte membrane (PEM) fuel cell operated with CO rich reformate [J. X. Zhang and R. Datta, J. Electrochem. Soc., 152, A1180 (2005)]. In the present contribution, we simplify a spatially extended version of this model in order to relate appearing pattern formation to electrochemical coupling mechanisms described by Krischer [K. Krischer, in Advances in Electrochemical Science and Engineering, Wiley (2003)]. It is concluded that mean-field- and migration-coupling are the fundamental mechanisms dictating pattern formation in the studied system. By artificially separating the electrical coupling terms it is found that large mean-field-coupling leads to a frequency entrainment and migration-coupling to a spatio-temporal intermittency scenario. It is argued that each of the situations can be found under realistic conditions, depending on the membrane conductivity and the system dimensions. © 2010 The Electrochemical Society

External Organisation(s)
Max Planck Institute for Dynamics of Complex Technical Systems
Otto-von-Guericke University Magdeburg
Type
Article
Journal
Journal of the Electrochemical Society
Volume
158
Pages
B44-B53
ISSN
0013-4651
Publication date
2011
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Surfaces, Coatings and Films, Electrochemistry, Materials Chemistry
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.1149/1.3507263 (Access: Unknown)