Structure-Activity Relationship in Pyrazolo[4,3- c]pyridines, First Inhibitors of PEX14-PEX5 Protein-Protein Interaction with Trypanocidal Activity

authored by
Maciej Dawidowski, Vishal C. Kalel, Valeria Napolitano, Roberto Fino, Kenji Schorpp, Leonidas Emmanouilidis, Dominik Lenhart, Michael Ostertag, Marcel Kaiser, Marta Kolonko, Bettina Tippler, Wolfgang Schliebs, Grzegorz Dubin, Pascal Mäser, Igor V. Tetko, Kamyar Hadian, Oliver Plettenburg, Ralf Erdmann, Michael Sattler, Grzegorz M. Popowicz
Abstract

Trypanosoma protists are pathogens leading to a spectrum of devastating infectious diseases. The range of available chemotherapeutics against Trypanosoma is limited, and the existing therapies are partially ineffective and cause serious adverse effects. Formation of the PEX14-PEX5 complex is essential for protein import into the parasites' glycosomes. This transport is critical for parasite metabolism and failure leads to mislocalization of glycosomal enzymes, with fatal consequences for the parasite. Hence, inhibiting the PEX14-PEX5 protein-protein interaction (PPI) is an attractive way to affect multiple metabolic pathways. Herein, we have used structure-guided computational screening and optimization to develop the first line of compounds that inhibit PEX14-PEX5 PPI. The optimization was driven by several X-ray structures, NMR binding data, and molecular dynamics simulations. Importantly, the developed compounds show significant cellular activity against Trypanosoma, including the human pathogen Trypanosoma brucei gambiense and Trypanosoma cruzi parasites.

Organisation(s)
Institute of Organic Chemistry
External Organisation(s)
Helmholtz Zentrum München - German Research Center for Environmental Health
Medical University of Warsaw
Ruhr-Universität Bochum
Jagiellonian University
ETH Zurich
Swiss Tropical Institute
University of Basel
Wroclaw University of Technology
Technical University of Munich (TUM)
Type
Article
Journal
Journal of medicinal chemistry
Volume
63
Pages
847-879
No. of pages
33
ISSN
0022-2623
Publication date
20.12.2019
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Molecular Medicine, Drug Discovery
Sustainable Development Goals
SDG 3 - Good Health and Well-being
Electronic version(s)
https://doi.org/10.1021/acs.jmedchem.9b01876 (Access: Open)