Realistic efficiency potential of next-generation industrial Czochralski-grown silicon solar cells after deactivation of the boron-oxygen-related defect center
- authored by
- Dominic C. Walter, Bianca Lim, Jan Schmidt
- Abstract
We measure carrier lifetimes of different Czochralski-grown silicon (Cz-Si) materials of various boron and oxygen concentrations and determine the maximum achievable lifetime after an optimized thermal treatment. We obtain very high and stable bulk lifetimes of several milliseconds, virtually eliminating the boron–oxygen (BO) defect complex, which previously limited the carrier lifetime in boron-doped Cz-Si materials after prolonged illumination. Based on these experimental results, we introduce a new parameterization of the bulk lifetime of B-doped Cz-Si after permanent deactivation of the BO center. Notably, we measure lifetimes up to 4 ms on 2-Ωcm Cz-Si wafers at an injection level of 1/10 of the doping concentration. Importantly, these high lifetime values can be reached within 10 and 20 s of BO deactivation treatment. A detailed analysis of the injection-dependent lifetimes reveals that the lifetimes after permanent deactivation of the BO center can be well described by a single-level recombination center characterized by an electron-to-hole capture cross-section ratio of 12 and located in the middle of the silicon band gap. We implement the novel parameterization into a two-dimensional device simulation of a passivated emitter and rear solar cell using technologically realistic cell parameters. The simulation reveals that based on current state-of-the-art solar cell production technology, efficiencies reaching 22.1% are realistically achievable in the near future after complete deactivation of the BO center.
- Organisation(s)
-
Institute of Solid State Physics
- External Organisation(s)
-
Institute for Solar Energy Research (ISFH)
- Type
- Article
- Journal
- Progress in Photovoltaics: Research and Applications
- Volume
- 24
- Pages
- 920-928
- No. of pages
- 9
- ISSN
- 1062-7995
- Publication date
- 17.06.2016
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Condensed Matter Physics, Electrical and Electronic Engineering
- Sustainable Development Goals
- SDG 7 - Affordable and Clean Energy
- Electronic version(s)
-
https://doi.org/10.1002/pip.2731 (Access:
Closed)