Multi-criteria energy system analysis of onshore wind power distribution in climate-neutral Germany

authored by
C. Lohr, F. Peterssen, M. Schlemminger, A. Bensmann, R. Niepelt, R. Brendel, R. Hanke-Rauschenbach
Abstract

Although onshore wind energy is a key pillar of renewable energy systems, installation targets in Europe have not been met. One contentious issue is its distribution, involving trade-offs between economic costs, environmental impact, public acceptance, and equity considerations. In this study, we evaluate different distribution strategies that meet Germany's national onshore wind power target of utilizing 2 % land area, breaking it down to subordinate levels such as federal states. Therefore, we define key indicators for energy policy objectives to comprehensively analyze these strategies. We employ an energy system optimization model to address the system integration of spatial onshore wind power distribution, an aspect often overlooked in previous studies. Our results indicate that the impact of different distribution strategies on the overall energy system design is moderate, with the highest sensitivity observed in the allocation of electrolyzers, which closely align with renewable energy surpluses. However, our analysis shows that concentrating onshore wind power in areas with high energy yield can lead to an increase in electricity transport by up to 38 %, whereas more evenly distributed scenarios are preferred for environmental sustainability and distributive justice. In conclusion, we argue that energy system analysis can enhance the accuracy of assessment of onshore wind power distribution, but it must consider non-techno-economic criteria within spatially-distributed energy systems itself to address policymakers.

Organisation(s)
Section Electrical Energy Storage Systems
Institute of Electric Power Systems
Solar Energy Section
Institute of Solid State Physics
External Organisation(s)
Institute for Solar Energy Research (ISFH)
Type
Article
Journal
Energy Reports
Volume
12
Pages
1905-1920
No. of pages
16
Publication date
12.2024
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
General Energy
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.1016/j.egyr.2024.07.064 (Access: Closed)