In vivo nonlinear imaging of corneal structures with special focus on BALB/c and streptozotocin-diabetic Thy1-YFP mice
- authored by
- Tobias Ehmke, Janine Leckelt, Maria Reichard, Heike Weiss, Marina Hovakimyan, Alexander Heisterkamp, Oliver Stachs, Simone Baltrusch
- Abstract
Two-photon microscopy (TPM) allows high contrast imaging at a subcellular resolution scale. In this work, the microscopy technique was applied to visualize corneal structures in two mouse models (BALB/c and B6.Cg-Tg(Thy1-YFP)16Jrs/J) in vivo. In particular, the transgenic Thy1-YFP mice expressing the yellow fluorescent protein (YFP) in all motor and sensory neurons had been used for investigating the nerve fiber density in healthy and streptozotocin-diabetic mice. This model is clinically relevant since patients suffering from diabetes mellitus have a high risk to develop small fiber neuropathy. Nonlinear laser scanning microscopy displayed a reduction of nerve fiber density in streptozotocin-diabetic versus healthy mice and confirmed data obtained by confocal laser scanning microscopy (CLSM). In recent years, corneal CLSM was proved to be an appropriate non-invasive tool for an early diagnosis of diabetic neuropathy. Nevertheless, validation of the CLSM method for the clinical routine is currently a matter of investigation and requires confirmation by further studies and complementary techniques. Thus, the present study provides further evidence of corneal confocal microscopy as a promising technique for non-invasive detection of diabetic neuropathy. Information derived from these experiments may become clinically relevant and help to develop new drugs for treatment of diabetic neuropathy.
- Organisation(s)
-
Institute of Quantum Optics
- External Organisation(s)
-
Laser Zentrum Hannover e.V. (LZH)
University of Rostock
- Type
- Article
- Journal
- Experimental Eye Research
- Volume
- 146
- Pages
- 137-144
- No. of pages
- 8
- ISSN
- 0014-4835
- Publication date
- 08.12.2015
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Ophthalmology, Sensory Systems, Cellular and Molecular Neuroscience
- Sustainable Development Goals
- SDG 3 - Good Health and Well-being
- Electronic version(s)
-
https://doi.org/10.1016/j.exer.2015.11.024 (Access:
Closed)