Well-Posedness and Stability Analysis of an Epidemic Model with Infection Age and Spatial Diffusion

authored by
Christoph Walker
Abstract

A compartment epidemic model for infectious disease spreading is investigated, where movement of individuals is governed by spatial diffusion. The model includes infection age of the infected individuals and assumes a logistic growth of the susceptibles. Global well-posedness of the equations within the class of nonnegative smooth solutions is shown. Moreover, spectral properties of the linearization around a steady state are derived. This yields the notion of linear stability which is used to determine stability properties of the disease-free and the endemic steady state in a special case of the model.

Organisation(s)
Institute of Applied Mathematics
Type
Article
Journal
Journal of Mathematical Biology
Volume
87
ISSN
0303-6812
Publication date
31.08.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Applied Mathematics, Agricultural and Biological Sciences (miscellaneous), Modelling and Simulation
Sustainable Development Goals
SDG 3 - Good Health and Well-being
Electronic version(s)
https://doi.org/10.48550/arXiv.2212.10137 (Access: Open)
https://doi.org/10.1007/s00285-023-01980-y (Access: Open)