20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation
- authored by
- Martin Schaper, Jan Schmidt, Heiko Plagwitz, Rolf Brendel
- Abstract
We have developed a crystalline silicon solar cell with amorphous silicon (a-Si:H) rear-surface passivation based on a simple process. The a-Si:H layer is deposited at 225°C by plasma-enhanced chemical vapor deposition. An aluminum grid is evaporated onto the a-Si:H-passivated rear. The base contacts are formed by COSIMA (contact formation to a-Si:H passivated wafers by means of annealing) when subsequently depositing the front silicon nitride layer at 325°C. The a-Si:H underneath the aluminum fingers dissolves completely within the aluminum and an ohmic contact to the base is formed. This contacting scheme results in a very low contact resistance of 3.5±0-2mΩcm 2 on low-resistivity (0-5 Ωcm) p-type silicon, which is below that obtained for conventional Al/Si contacts. We achieve an independently confirmed energy conversion efficiency of 20-1% under one-sun standard testing conditions for a 4cm2 large cell. Measurements of the internal quantum efficiency show an improved rear surface passivation compared with reference cells with a silicon nitride rear passivation.
- External Organisation(s)
-
Institute for Solar Energy Research (ISFH)
- Type
- Article
- Journal
- Progress in Photovoltaics: Research and Applications
- Volume
- 13
- Pages
- 381-386
- No. of pages
- 6
- ISSN
- 1062-7995
- Publication date
- 27.06.2005
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Condensed Matter Physics, Electrical and Electronic Engineering
- Sustainable Development Goals
- SDG 7 - Affordable and Clean Energy
- Electronic version(s)
-
https://doi.org/10.1002/pip.641 (Access:
Closed)