Novel busbar design for screen-printed front side Al metallization of high-efficiency solar cell
- authored by
- Henning Schulte-Huxel, Thomas Daschinger, Byungsul Min, Till Brendemühl, Rolf Brendel
- Abstract
The need to reduce the silver consumption for future global PV production requires novel approaches for cell metallization and module integration. A screen-printed aluminum cell metallization on the front side could contribute here, but requires a redesign of the solder pads and busbars. A compromise between shading and resistive losses is needed. We investigate the inclusion of Ag solder pads in high-aspect-ratio Al finger grids on the front side of p-type back junction solar cells featuring passivating polysilicon on oxide (POLO) contacts on the rear side. In order to determine the optimal geometric dimensions of the solder pads, we characterize the resistance at the interface between the Ag solder pads and the Al finger grid in dependence on the size of the overlap between the two paste. A contact resistance of 285 mΩ is determined for 200 μm-narrow Al busbars and small solder pads of 750 μm in length. This would require tens of solder pads per busbar for acceptable power losses below 0.5 % coming along with significant shading. Therefore, a new metallization design is developed. We use narrow Ag busbars with a widened intersection to the Al fingers in order to reduce the contact resistance caused by the Ag–Al alloy. Thereby, the shading losses of the solderable busbars and pads are less than 1.5 %.
- Organisation(s)
-
Solar Energy Section
- External Organisation(s)
-
Institute for Solar Energy Research (ISFH)
- Type
- Article
- Journal
- Solar Energy Materials and Solar Cells
- Volume
- 264
- No. of pages
- 5
- ISSN
- 0927-0248
- Publication date
- 01.2024
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Surfaces, Coatings and Films
- Sustainable Development Goals
- SDG 7 - Affordable and Clean Energy
- Electronic version(s)
-
https://doi.org/10.1016/j.solmat.2023.112601 (Access:
Closed)