Modeling of Pore-Scale Capillary-Dominated Flow and Bubble Detachment in PEM Water Electrolyzer Anodes Using the Volume of Fluid Method
- authored by
- Gergely Schmidt, Daniel Niblett, Vahid Niasar, Insa Neuweiler
- Abstract
Fluid dynamics models complement expensive experiments with limited measurement accuracy that investigate the mass transport in PEM water electrolysis. Here, a first-principle microscale model for oxygen transport is successfully validated that accounts for (1) uncertain transport processes in catalyst layers, (2) numerically challenging capillary-dominated two-phase flow and (3) bubble detachments in channels. We developed algorithms for the stochastic generation of geometries and for the coupling of flow and transport processes. The flow model is based on the volume of fluid method and reproduces experimentally measured pressure drops and bubble velocities within minichannels with a 30% and 20% accuracy, respectively, provided that the capillary number is above 2.1 × 10−7. At lower capillary numbers, excessive spurious currents occur. Correspondingly, two-phase flow simulations within the porous transport layers are stable at current densities above 0.5 A cm−2 and match operando gas saturation measurements within a 20% margin at relevant locations. The simulated bubble detachments occur at pore throats that agree with porosimetry and microfluidic experiments. The presented model allows explaining and optimizing mass transport processes in channels and porous transport layers. These were found to be negligibly sensitive to transport resistances within the catalyst layer, providing information on boundary conditions for future catalyst layer models.
- Organisation(s)
-
Institute of Fluid Mechanics and Environmental Physics in Civil Engineering
- External Organisation(s)
-
Newcastle University
University of Manchester
- Type
- Article
- Journal
- Journal of the Electrochemical Society
- Volume
- 171
- No. of pages
- 16
- ISSN
- 0013-4651
- Publication date
- 03.07.2024
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Condensed Matter Physics, Surfaces, Coatings and Films, Electrochemistry, Materials Chemistry
- Sustainable Development Goals
- SDG 7 - Affordable and Clean Energy
- Electronic version(s)
-
https://doi.org/10.1149/1945-7111/ad5708 (Access:
Open)