Dynamic Simulation Model and Experimental Validation of One Passive Fuel Cell–Battery Hybrid Powertrain for an Electric Light Scooter

authored by
Zhiming Zhang, Alexander Rex, Jiaming Zhou, Xinfeng Zhang, Gangqiang Huang, Jinming Zhang, Tong Zhang
Abstract

Given the escalating issue of climate change, environmental protection is of growing importance. A rising proportion of battery-powered scooters are becoming available. However, their range is limited, and they require a long charging time. The fuel cell–battery-powered electric scooter appears to be a promising alternative. Further development of the active hybrid is the passive hybrid, in which the fuel cell is directly coupled to the battery, eliminating the need for a DC/DC converter. The passive hybrid promises the possibility of a reduction in the installation volume and cost. A simulation model is created MATLAB/Simulink for the passive fuel cell–battery hybrid electric scooter. It specifically focuses on how the power split between the fuel cell and battery occurs under dynamic load requirements. The scooter is powered by two air–hydrogen Proton Exchange Membrane Fuel Cell (PEMFC) systems with a nominal power of 250 W each and a Li-ion battery (48 V, 12 Ah). The validation is performed following an ECE-R47 driving cycle. The maximum relative deviation of the fuel cell is 2.82% for the current value. The results of the simulation show a high level of agreement with the test data. This study provides a method allowing for an efficient assessment of the passive fuel cell–battery hybrid electric scooter.

External Organisation(s)
Tongji University
Weifang University of Science and Technology
Hangzhou City University (HZCU)
Tsinghua University
Type
Article
Journal
Sustainability (Switzerland)
Volume
15
ISSN
2071-1050
Publication date
09.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Computer Science (miscellaneous), Geography, Planning and Development, Renewable Energy, Sustainability and the Environment, Environmental Science (miscellaneous), Energy Engineering and Power Technology, Hardware and Architecture, Computer Networks and Communications, Management, Monitoring, Policy and Law
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy, SDG 13 - Climate Action
Electronic version(s)
https://doi.org/10.3390/su151713180 (Access: Open)