Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry
- authored by
- K. Kaczmarek, G. Langer, G. Nehrke, I. Horn, S. Misra, M. Janse, J. Bijma
- Abstract
A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.
- Organisation(s)
-
Institute of Mineralogy
- External Organisation(s)
-
Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
University of Cambridge
Burgers’ Zoo
- Type
- Article
- Journal
- BIOGEOSCIENCES
- Volume
- 12
- Pages
- 1753-1763
- No. of pages
- 11
- ISSN
- 1726-4170
- Publication date
- 18.03.2015
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics, Earth-Surface Processes
- Sustainable Development Goals
- SDG 14 - Life Below Water
- Electronic version(s)
-
https://doi.org/10.5194/bg-12-1753-2015 (Access:
Open)
https://doi.org/10.5194/bg-12-2469-2015 (Access: Open)