Printable liquid silicon for local doping of solar cells

authored by
Felix Haase, Bianca Lim, Agnes Merkle, Thorsten Dullweber, Rolf Brendel, Christian Günther, Michael H. Holthausen, Christoph Mader, Odo Wunnicke, Robby Peibst
Abstract

We demonstrate the application of a liquid-processed doped silicon precursor as a doping source for the fabrication of interdigitated back contact solar cells. We integrate phosphorus- as well as boron-doped liquid silicon in our n-type interdigitated back contact cell process based on laser-structuring. The cell with the phosphorus back surface field from liquid silicon has an efficiency of 20.9% and the cell with the boron emitter from liquid silicon has an efficiency of 21.9%. We measure saturation current densities of 34 fA cm−2 on phosphorus-doped layers with a sheet resistance of 108 Ω/sq and 18 fA cm−2 on boron-doped layers with a sheet resistance of 140 Ω/sq using passivated test samples.

Organisation(s)
Institute of Solid State Physics
Institute of Electronic Materials and Devices
External Organisation(s)
Institute for Solar Energy Research (ISFH)
Evonik Operations GmbH
Type
Article
Journal
Solar Energy Materials and Solar Cells
Volume
179
Pages
129-135
No. of pages
7
ISSN
0927-0248
Publication date
01.06.2018
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Surfaces, Coatings and Films
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.1016/j.solmat.2017.11.003 (Access: Closed)