Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-Δ-Sr2Fe1.5Mo0.5O5+Δ membrane reactor with improved stability

authored by
Wenyuan Liang, Hangyue Zhou, Jürgen Caro, Heqing Jiang
Abstract

Coupling of partial oxidation of methane (POM) with water dissociation in an oxygen transport membrane is a promising technology for methane utilization. However, cobalt-based membrane materials show poor stability under the above harsh conditions. In this work, a nominal 60 wt % Ce0.8Sm0.2O2-δ-40 wt % Sr2Fe1.5Mo0.5O5+δ (CSO-SFMO) dual phase membrane is reported, which was synthesized by using a one-pot EDTA-citric acid complexing method. The phase structure and morphology of the CSO-SFMO membrane were characterized by XRD, SEM and EDXS. It was found that a uniform distribution of CSO phase with a fluorite structure and SFMO phase with a perovskite structure was achieved in the dual phase membrane. The CSO-SFMO membrane exhibited an improved stability compared with cobalt based perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) membrane under CO2 or reductive gas atmospheres. The oxygen permeation flux of the dual phase membrane was investigated under different oxygen partial pressure gradients: air/He, air/CO2, air/POM, and H2O/POM. At 950 °C, the oxygen permeation fluxes of the CSO-SFMO membrane under air/POM and H2O/POM gradients were 2.7 cm3 (STP) min−1 cm−2 and 0.75 cm3 (STP) min−1 cm−2, respectively, which were much higher than the oxygen flux of 0.1 cm3 (STP) min−1 cm−2 under air/He. Moreover, a CO selectivity of 98%, a CH4 conversion of 97% on the POM side and a H2 production of 1.5 cm3 (STP) min−1 cm−2 on the H2O splitting side were achieved in CSO-SFMO membrane reactor under the oxygen partial pressure gradient of H2O/POM, which was steadily run for 100 h before the measurement was intentionally stopped.

Organisation(s)
Institute of Physical Chemistry and Electrochemistry
External Organisation(s)
University of the Chinese Academy of Sciences (UCAS)
Chinese Academy of Sciences (CAS)
Type
Article
Journal
International Journal of Hydrogen Energy
Volume
43
Pages
14478-14485
No. of pages
8
ISSN
0360-3199
Publication date
02.08.2018
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Renewable Energy, Sustainability and the Environment, Fuel Technology, Condensed Matter Physics, Energy Engineering and Power Technology
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.1016/j.ijhydene.2018.06.008 (Access: Closed)