Organic-silicon heterojunction solar cells on n-type silicon wafers

The BackPEDOT concept

authored by
Dimitri Zielke, Alexandra Pazidis, Florian Werner, Jan Schmidt
Abstract

We measure saturation current densities down to J0=80 fA/cm2 for organic-silicon heterojunctions with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as an organic layer. This remarkably low J0 value corresponds to implied open-circuit voltages around 690 mV, demonstrating the high-efficiency potential of this novel junction type. However, experimentally realized organic-silicon heterojunction solar cells showed relatively moderate efficiencies so far, typically below 12%. We demonstrate in this study that these solar cells were limited by the fact that the organic-silicon junction was localized on the cell front, resulting in a significant parasitic light absorption within the PEDOT:PSS layer. In addition, the rear surface of these front-junction solar cells was either poorly passivated or not passivated at all. In this paper, we overcome these limitations by proposing a back-junction organic-silicon solar cell, the so-called "BackPEDOT" cell. We show that placing PEDOT:PSS on the rear side instead of the front surface avoids parasitic light absorption within the PEDOT:PSS and allows for an improved surface passivation. We fabricate and characterize BackPEDOT solar cells and achieve very high open-circuit voltages of up to 663 mV and short-circuit current densities of up to 39.7 mA/cm2. Despite the relatively high series resistances of our first BackPEDOT cells, we achieve an energy conversion efficiency of 17.4%. The measured pseudo efficiency of the best cell of 21.2% suggests that our novel BackPEDOT cell concept is indeed suitable for easy-to-fabricate high-efficiency solar cells after some further optimization to reduce the contact resistance between the PEDOT and the n-type silicon wafer. Based on realistic assumptions we conclude that Back PEDOT cells have an efficiency potential exceeding 22%.

Organisation(s)
Institute of Solid State Physics
External Organisation(s)
Institute for Solar Energy Research (ISFH)
Type
Article
Journal
Solar Energy Materials and Solar Cells
Volume
131
Pages
110-116
No. of pages
7
ISSN
0927-0248
Publication date
12.2014
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Surfaces, Coatings and Films
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.1016/j.solmat.2014.05.022 (Access: Unknown)