Learning from major accidents

Graphical representation and analysis of multi-attribute events to enhance risk communication

authored by
Raphael Moura, Michael Beer, Edoardo Patelli, John Lewis
Abstract

Major accidents are complex, multi-attribute events, originated from the interactions between intricate systems, cutting-edge technologies and human factors. Usually, these interactions trigger very particular accident sequences, which are hard to predict but capable of producing exacerbated societal reactions and impair communication channels among stakeholders. Thus, the purpose of this work is to convert high-dimensional accident data into a convenient graphical alternative, in order to overcome barriers to communicate risk and enable stakeholders to fully understand and learn from major accidents. This paper first discusses contemporary views and biases related to human errors in major accidents. The second part applies an artificial neural network approach to a major accident dataset, to disclose common patterns and significant features. The complex data will be then translated into 2-D maps, generating graphical interfaces which will produce further insight into the conditions leading to accidents and support a novel and comprehensive “learning from accidents” experience.

Organisation(s)
Institute for Risk and Reliability
External Organisation(s)
University of Liverpool
Brazilian National Agency for Petroleum, Natural Gas and Biofuels (ANP)
Type
Article
Journal
Safety Science
Volume
99
Pages
58-70
No. of pages
13
ISSN
0925-7535
Publication date
11.2017
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Safety, Risk, Reliability and Quality, Safety Research, Public Health, Environmental and Occupational Health
Sustainable Development Goals
SDG 3 - Good Health and Well-being
Electronic version(s)
https://strathprints.strath.ac.uk/72213/1/Moura_etal_SS_2017_Learning_from_major_accidents_graphical_representation.pdf (Access: Open)
https://doi.org/10.1016/j.ssci.2017.03.005 (Access: Closed)