Numerical simulations of buried emitter back-junction solar cells
- authored by
- Nils P. Harder, Verena Mertens, Rolf Brendel
- Abstract
We recently introduced the buried emitter back-junction solar cell, featuring large area fractions of overlap between n +-type and p +-type regions at the rear side of the device. In this paper we analyse the performance of the buried emitter solar cell (BESC) and its generalisations by one-dimensional device simulations and analytical model calculations. A key finding is that the generalised versions of the BESC structure allows achieving very high efficiencies by passivating virtually the entire surface of p-type emitters by an oxidised n-type surface layer. A disadvantage of this type of full-area emitter passivation in the generalised back-junction BESC is the need for an insulating layer between the metallisation of the emitter and the contact to the base, which is technologically difficult to achieve.
- External Organisation(s)
-
Institute for Solar Energy Research (ISFH)
- Type
- Article
- Journal
- Progress in Photovoltaics: Research and Applications
- Volume
- 17
- Pages
- 253-263
- No. of pages
- 11
- ISSN
- 1062-7995
- Publication date
- 06.2009
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Condensed Matter Physics, Electrical and Electronic Engineering
- Sustainable Development Goals
- SDG 7 - Affordable and Clean Energy
- Electronic version(s)
-
https://doi.org/10.1002/pip.887 (Access:
Closed)