Model updating of wind turbine blade cross sections with invertible neural networks

verfasst von
Pablo Noever Castelos, Lynton Ardizzone, Claudio Balzani
Abstract

Fabricated wind turbine blades have unavoidable deviations from their designs due to imperfections in the manufacturing processes. Model updating is a common approach to enhance model predictions and therefore improve the numerical blade design accuracy compared to the built blade. An updated model can provide a basis for a digital twin of the rotor blade including the manufacturing deviations. Classical optimization algorithms, most often combined with reduced order or surrogate models, represent the state of the art in structural model updating. However, these deterministic methods suffer from high computational costs and a missing probabilistic evaluation. This feasibility study approaches the model updating task by inverting the model through the application of invertible neural networks, which allow for inferring a posterior distribution of the input parameters from given output parameters, without costly optimization or sampling algorithms. In our use case, rotor blade cross sections are updated to match given cross-sectional parameters. To this end, a sensitivity analysis of the input (material properties or layup locations) and output parameters (such as stiffness and mass matrix entries) first selects relevant features in advance to then set up and train the invertible neural network. The trained network predicts with outstanding accuracy most of the selected cross-sectional input parameters for different radial positions; that is, the posterior distribution of these parameters shows a narrow width. At the same time, it identifies some parameters that are hard to recover accurately or contain intrinsic ambiguities. Hence, we demonstrate that invertible neural networks are highly capable for structural model updating.

Organisationseinheit(en)
Institut für Windenergiesysteme
Externe Organisation(en)
Ruprecht-Karls-Universität Heidelberg
Typ
Artikel
Journal
WIND ENERGY
Band
25
Seiten
573-599
Anzahl der Seiten
27
ISSN
1095-4244
Publikationsdatum
10.03.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Erneuerbare Energien, Nachhaltigkeit und Umwelt
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1002/we.2687 (Zugang: Offen)