Model updating of wind turbine blade cross sections with invertible neural networks
- verfasst von
- Pablo Noever Castelos, Lynton Ardizzone, Claudio Balzani
- Abstract
Fabricated wind turbine blades have unavoidable deviations from their designs due to imperfections in the manufacturing processes. Model updating is a common approach to enhance model predictions and therefore improve the numerical blade design accuracy compared to the built blade. An updated model can provide a basis for a digital twin of the rotor blade including the manufacturing deviations. Classical optimization algorithms, most often combined with reduced order or surrogate models, represent the state of the art in structural model updating. However, these deterministic methods suffer from high computational costs and a missing probabilistic evaluation. This feasibility study approaches the model updating task by inverting the model through the application of invertible neural networks, which allow for inferring a posterior distribution of the input parameters from given output parameters, without costly optimization or sampling algorithms. In our use case, rotor blade cross sections are updated to match given cross-sectional parameters. To this end, a sensitivity analysis of the input (material properties or layup locations) and output parameters (such as stiffness and mass matrix entries) first selects relevant features in advance to then set up and train the invertible neural network. The trained network predicts with outstanding accuracy most of the selected cross-sectional input parameters for different radial positions; that is, the posterior distribution of these parameters shows a narrow width. At the same time, it identifies some parameters that are hard to recover accurately or contain intrinsic ambiguities. Hence, we demonstrate that invertible neural networks are highly capable for structural model updating.
- Organisationseinheit(en)
-
Institut für Windenergiesysteme
- Externe Organisation(en)
-
Ruprecht-Karls-Universität Heidelberg
- Typ
- Artikel
- Journal
- WIND ENERGY
- Band
- 25
- Seiten
- 573-599
- Anzahl der Seiten
- 27
- ISSN
- 1095-4244
- Publikationsdatum
- 10.03.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.1002/we.2687 (Zugang:
Offen)