Recent Advances in Modelling Geodetic Time Series and Applications for Earth Science and Environmental Monitoring
- verfasst von
- Xiaoxing He, Jean Philippe Montillet, Zhao Li, Gaël Kermarrec, Rui Fernandes, Feng Zhou
- Abstract
Geodesy is the science of accurately measuring the topography of the earth (geometric shape and size), its orientation in space, and its gravity field. With the advances in our knowledge and technology, this scientific field has extended to the understanding of geodynamical phenomena such as crustal motion, tides, and polar motion. This Special Issue is dedicated to the recent advances in modelling geodetic time series recorded using various instruments. Due to the stochastic noise properties inherent in each of the time series, careful modelling is necessary in order to extract accurate geophysical information with realistic associated uncertainties (statistically sufficient). The analyzed data have been recorded with various space missions or ground-based instruments. It is impossible to be comprehensive in the vast and dynamic field that is Geodesy, particularly so-called “Environmental Geodesy”, which intends to understand the Earth’s geodynamics by monitoring any changes in our environment. This field has gained much attention in the past two decades due to the need by the international community to understand how climate change modifies our environment. Therefore, this Special Issue collects some articles which emphasize the recent development of specific algorithms or methodologies to study particular natural phenomena related to the geodynamics of the earth’s crust and climate change.
- Organisationseinheit(en)
-
Institut für Meteorologie und Klimatologie
- Externe Organisation(en)
-
Jiangxi University of Science and Technology
Physikalisch-Meteorologisches Observatorium World Radiation Center (PMOD/WRC)
University of Beira Interior
Wuhan University
Shandong University of Science and Technology
- Typ
- Editorial in Fachzeitschrift
- Journal
- Remote sensing
- Band
- 14
- ISSN
- 2072-4292
- Publikationsdatum
- 05.12.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Ziele für nachhaltige Entwicklung
- SDG 13 – Klimaschutzmaßnahmen
- Elektronische Version(en)
-
https://doi.org/10.3390/rs14236164 (Zugang:
Offen)