Enhanced soil organic carbon stability in rhizosphere through manure application
- verfasst von
- Guodong Shao, Yi Xu, Jie Zhou, Peng Tian, Juanjuan Ai, Yadong Yang, Kazem Zamanian, Zhaohai Zeng, Huadong Zang
- Abstract
Rhizosphere dynamics exert significant control over soil carbon (C) processes in agroecosystems, especially under various fertilization regimes. However, the impact of fertilization regimes on soil organic carbon (SOC) mineralization and its temperature sensitivity (Q10) in the rhizosphere compared to bulk soil remains poorly understood. Here, we collected rhizosphere and bulk soils (0–20 cm) of maize from a five-year field experiment with four fertilization regimes: without fertilizer (CK), purely mineral fertilizer (NPK), half mineral fertilizers combined with half manure (NPKM), and purely manure (M). Soils were incubated at both 15 °C and 25 °C for 60 days. Results demonstrated that M decreased specific SOC mineralization by 10–25 % compared to the NPK, regardless of soil locations and temperatures. The Q10 of the labile C pool in the bulk soil was increased by 38–93 %, whereas in the rhizosphere, the Q10 of both labile and stable C pools exhibited a decrease of 5–23 % in the NPKM and M compared to the NPK and CK. Additionally, the rhizosphere exhibited lower specific SOC mineralization and Q10 of the stable C pool, but higher Q10 of the labile C pool compared to the bulk soil across all fertilization regimes. These contrasting responses of SOC mineralization and its Q10 in rhizosphere and bulk soils following manure application are attributed to the variations in nutrient availability (i.e., dissolved organic N and C) and microbial activities (i.e., microbial biomass C and enzyme activity). Therefore, fertilization regimes that provide microbially available organic compounds, such as manuring, effectively inhibit SOC mineralization and enhance SOC stability to global warming in the rhizosphere. Such fertilization strategy can serve as a climate-smart agricultural practice to achieve C neutrality.
- Organisationseinheit(en)
-
Institut für Erdsystemwissenschaften
- Externe Organisation(en)
-
China Agricultural University
Eberhard Karls Universität Tübingen
Nanjing Agricultural University
Anhui Agricultural University
Nanjing University of Information Science and Technology
- Typ
- Artikel
- Journal
- Soil and Tillage Research
- Band
- 244
- ISSN
- 0167-1987
- Publikationsdatum
- 09.07.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Agronomie und Nutzpflanzenwissenschaften, Bodenkunde, Erdoberflächenprozesse
- Ziele für nachhaltige Entwicklung
- SDG 2 – Kein Hunger, SDG 13 – Klimaschutzmaßnahmen
- Elektronische Version(en)
-
https://doi.org/10.1016/j.still.2024.106223 (Zugang:
Geschlossen)