In vitro toxicological nanoparticle studies under flow exposure

verfasst von
Franziska Sambale, Frank Stahl, Detlef Bahnemann, Thomas Scheper
Abstract

The use of nanoparticles is becoming increasingly common in industry and everyday objects. Thus, extensive risk management concerning the potential health risk of nanoparticles is important. Currently, in vitro nanoparticle testing is mainly performed under static culture conditions without any shear stress. However, shear stress is an important biomechanical parameter. Therefore, in this study, a defined physiological flow to different mammalian cell lines such as A549 cells and NIH-3T3 cells has been applied. The effects of zinc oxide and titanium dioxide nanoparticles (TiO2-NP), respectively, were investigated under both static and dynamic conditions. Cell viability, cell morphology, and adhesion were proven and compared to the static cell culture. Flow exposure had an impact on the cellular morphology of the cells. NIH-3T3 cells were elongated in the direction of flow and A549 cells exhibited vesicles inside the cells. Zinc oxide nanoparticles reduced the cell viability in the static and in the dynamic culture; however, the dynamic cultures were more sensitive. In the static culture and in the dynamic culture, TiO2-NP did not affect cell viability. In conclusion, dynamic culture conditions are important for further in vitro investigations and provide more relevant results than static culture conditions.

Organisationseinheit(en)
Institut für Technische Chemie
Externe Organisation(en)
Staatliche Universität Sankt Petersburg
Typ
Artikel
Journal
Journal of nanoparticle research
Band
17
ISSN
1388-0764
Publikationsdatum
11.07.2015
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Bioengineering, Chemie (insg.), Atom- und Molekularphysik sowie Optik, Modellierung und Simulation, Werkstoffwissenschaften (insg.), Physik der kondensierten Materie
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1007/s11051-015-3106-2 (Zugang: Geschlossen)