Abstract temporal diagnosis in medical domains

verfasst von
Johann Gamper, Wolfgang Nejdl
Abstract

Most current model-based diagnosis formalisms and algorithms are defined only for static systems, which is often inadequate for medical reasoning. In this paper we describe a model-based framework plus algorithms for diagnosing time-dependent systems where we can define qualitative temporal scenarios. Complex temporal behavior is described within a logical framework extended by qualitative temporal constraints. Abstract observations aggregate from observations at time points to assumptions over time intervals. These concepts provide a very natural representation and make diagnosis independent of the number of actual observations and the temporal resolution. The concept of abstract temporal diagnosis captures in a natural way the kind of indefinite temporal knowledge which is frequently available in medical diagnoses. We use vital hepatitis B (including a set of real hepatitis B data) to illustrate and evaluate our framework. The comparison of our results with the results of HEPAXPERT-1 is promising. The diagnosis computed in our system is often more precise than the diagnosis in HEPAXPERT-1 and we detect inconsistent data sequences which cannot be detected in the latter system.

Organisationseinheit(en)
Fachgebiet Wissensbasierte Systeme
Externe Organisation(en)
Eurac Research
Typ
Artikel
Journal
Artificial Intelligence in Medicine
Band
10
Seiten
209-234
Anzahl der Seiten
26
ISSN
0933-3657
Publikationsdatum
07.1997
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Medizin (sonstige), Artificial intelligence
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1016/S0933-3657(97)00393-X (Zugang: Unbekannt)