Approximating voltage stability boundary under high variability of renewables using differential geometry

verfasst von
Dan Wu, Franz Erich Wolter, Sijia Geng
Abstract

This paper proposes a novel method rooted in differential geometry to approximate the voltage stability boundary of power systems under high variability of renewable generation. We extract intrinsic geometric information of the power flow solution manifold at a given operating point. Specifically, coefficients of the Levi-Civita connection are constructed to approximate the geodesics of the manifold starting at an operating point along any interested directions that represent possible fluctuations in generation and load. Then, based on the geodesic approximation, we further predict the voltage collapse point by solving a few univariate quadratic equations. Conventional methods mostly rely on either expensive numerical continuation at specified directions or numerical optimization. Instead, the proposed approach constructs the Christoffel symbols of the second kind from the Riemannian metric tensors to characterize the complete local geometry which is then extended to the proximity of the stability boundary with efficient computations. As a result, this approach is suitable to handle high-dimensional variability in operating points due to the large-scale integration of renewable resources. Using various case studies, we demonstrate the advantages of the proposed method and provide additional insights and discussions on voltage stability in renewable-rich power systems.

Organisationseinheit(en)
Fakultät für Elektrotechnik und Informatik
Externe Organisation(en)
Huazhong University of Science and Technology
Johns Hopkins University
Typ
Artikel
Journal
Electric power systems research
Band
236
Anzahl der Seiten
7
ISSN
0378-7796
Publikationsdatum
11.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Energieanlagenbau und Kraftwerkstechnik, Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2310.01911 (Zugang: Offen)
https://doi.org/10.1016/j.epsr.2024.110716 (Zugang: Geschlossen)