Advancing dermoscopy through a synthetic hair benchmark dataset and deep learning-based hair removal

verfasst von
Lennart Jütte, Harshkumar Patel, Bernhard Roth
Abstract

Significance: Early detection of melanoma is crucial for improving patient outcomes, and dermoscopy is a critical tool for this purpose. However, hair presence in dermoscopic images can obscure important features, complicating the diagnostic process. Enhancing image clarity by removing hair without compromising lesion integrity can significantly aid dermatologists in accurate melanoma detection. Aim: We aim to develop a novel synthetic hair dermoscopic image dataset and a deep learning model specifically designed for hair removal in melanoma dermoscopy images. Approach: To address the challenge of hair in dermoscopic images, we created a comprehensive synthetic hair dataset that simulates various hair types and dimensions over melanoma lesions. We then designed a convolutional neural network (CNN)-based model that focuses on effective hair removal while preserving the integrity of the melanoma lesions. Results: The CNN-based model demonstrated significant improvements in the clarity and diagnostic utility of dermoscopic images. The enhanced images provided by our model offer a valuable tool for the dermatological community, aiding in more accurate and efficient melanoma detection. Conclusions: The introduction of our synthetic hair dermoscopic image dataset and CNN-based model represents a significant advancement in medical image analysis for melanoma detection. By effectively removing hair from dermoscopic images while preserving lesion details, our approach enhances diagnostic accuracy and supports early melanoma detection efforts.

Organisationseinheit(en)
Hannoversches Zentrum für Optische Technologien (HOT)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Typ
Artikel
Journal
Journal of biomedical optics
Band
29
Anzahl der Seiten
1
ISSN
1083-3668
Publikationsdatum
19.11.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Biomaterialien, Atom- und Molekularphysik sowie Optik, Biomedizintechnik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1117/1.JBO.29.11.116003 (Zugang: Offen)