Temperature response of permafrost soil carbon is attenuated by mineral protection

verfasst von
Norman Gentsch, Birgit Wild, Robert Mikutta, Petr Čapek, Katka Diáková, Marion Schrumpf, Stephanie Turner, Cynthia Minnich, Frank Schaarschmidt, Olga Shibistova, Jörg Schnecker, Tim Urich, Antje Gittel, Hana Šantrůčková, Jiři Bárta, Nikolay Lashchinskiy, Roland Fuß, Andreas Richter, Georg Guggenberger
Abstract

Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.

Organisationseinheit(en)
Institut für Bodenkunde
Abteilung Biostatistik
Leibniz Forschungszentrum FZ:GEO
Externe Organisation(en)
Universität Wien
Austrian Polar Research Institute
Stockholm University
Martin-Luther-Universität Halle-Wittenberg
University of South Bohemia
Max-Planck-Institut für Biogeochemie
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)
Universität Bayreuth
Russian Academy of Sciences (RAS)
University of New Hampshire
Universität Greifswald
University of Bergen (UiB)
Aarhus University
Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei
Typ
Artikel
Journal
Global change biology
Band
24
Seiten
3401-3415
Anzahl der Seiten
15
ISSN
1354-1013
Publikationsdatum
03.07.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Globaler Wandel, Umweltchemie, Ökologie, Allgemeine Umweltwissenschaft
Ziele für nachhaltige Entwicklung
SDG 13 – Klimaschutzmaßnahmen
Elektronische Version(en)
https://doi.org/10.1111/gcb.14316 (Zugang: Geschlossen)