Automated extraction of plantations from ikonos satellite imagery using a level set based segmentation method

verfasst von
Karsten Vogt, Björn Scheuermann, Christian Becker, Torsten Büschenfeld, Bodo Rosenhahn, Jörn Ostermann
Abstract

In this article we present a method that extracts plantations from satellite imagery by finding and exploiting appropriate feature space projections. Segmentation is done using an automatic two-region segmentation based on the level set method. The behaviour of this algorithm is defined by a statistical region model that describes the similarity of regions using distances in arbitrary feature spaces. Subsequently different feature spaces will be evaluated regarding their plantation classification quality in an automatic fashion. The segmentation quality of our method is assessed by testing several orthophotos depicting a wide range of landscape types and comparing them with a manual segmentation. We show that a combination of simple texture based features like the structure tensor and the Hessian matrix are sufficient to facilitate an effective plantation segmentation scheme.

Organisationseinheit(en)
Institut für Informationsverarbeitung
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Band
38
Seiten
275-280
Anzahl der Seiten
6
ISSN
1682-1750
Publikationsdatum
2010
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Information systems, Geografie, Planung und Entwicklung
Ziele für nachhaltige Entwicklung
SDG 15 – Lebensraum Land