Global solvability of a model for tuberculosis granuloma formation

verfasst von
Mario Fuest, Johannes Lankeit, Masaaki Mizukami
Abstract

We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for ut=DuΔu−χu∇⋅(u∇v)−γuuv−δuu+βu,vt=DvΔv+ρvv−γvuv+μvw,wt=DwΔw+γwuv−αwwz−μww,zt=DzΔz−χz∇⋅(z∇w)+αzf(w)z−δzzin bounded domains in the classical and weak sense in the two- and three-dimensional setting, respectively. In order to derive suitable a priori estimates, we study the evolution of the well-known energy functional for the chemotaxis–consumption system both for the (u,v)- and the (z,w)-subsystem. A key challenge compared to “pure” consumption systems consists of overcoming the difficulties raised by the additional, in part positive, terms in the second and third equations. This is inter alia achieved by utilizing a dissipative term of the (quasi-)energy functional, which may just be discarded in simpler consumption systems.

Organisationseinheit(en)
Fakultät für Mathematik und Physik
Externe Organisation(en)
Kyoto University of Education
Typ
Artikel
Journal
Nonlinear Analysis: Real World Applications
Band
85
ISSN
1468-1218
Publikationsdatum
28.03.2025
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Allgemeiner Maschinenbau, Allgemeine Ökonomie, Ökonometrik und Finanzen, Computational Mathematics, Angewandte Mathematik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1016/j.nonrwa.2025.104369 (Zugang: Geschlossen)
https://doi.org/ arXiv:2411.00542 (Zugang: Offen)