Global solvability of a model for tuberculosis granuloma formation
- verfasst von
- Mario Fuest, Johannes Lankeit, Masaaki Mizukami
- Abstract
We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for ut=DuΔu−χu∇⋅(u∇v)−γuuv−δuu+βu,vt=DvΔv+ρvv−γvuv+μvw,wt=DwΔw+γwuv−αwwz−μww,zt=DzΔz−χz∇⋅(z∇w)+αzf(w)z−δzzin bounded domains in the classical and weak sense in the two- and three-dimensional setting, respectively. In order to derive suitable a priori estimates, we study the evolution of the well-known energy functional for the chemotaxis–consumption system both for the (u,v)- and the (z,w)-subsystem. A key challenge compared to “pure” consumption systems consists of overcoming the difficulties raised by the additional, in part positive, terms in the second and third equations. This is inter alia achieved by utilizing a dissipative term of the (quasi-)energy functional, which may just be discarded in simpler consumption systems.
- Organisationseinheit(en)
-
Fakultät für Mathematik und Physik
- Externe Organisation(en)
-
Kyoto University of Education
- Typ
- Artikel
- Journal
- Nonlinear Analysis: Real World Applications
- Band
- 85
- ISSN
- 1468-1218
- Publikationsdatum
- 28.03.2025
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Allgemeiner Maschinenbau, Allgemeine Ökonomie, Ökonometrik und Finanzen, Computational Mathematics, Angewandte Mathematik
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://doi.org/10.1016/j.nonrwa.2025.104369 (Zugang:
Geschlossen)
https://doi.org/ arXiv:2411.00542 (Zugang: Offen)