Detecting health events on the social web to enable epidemic intelligence

verfasst von
Marco Fisichella, Avaré Stewart, Alfredo Cuzzocrea, Kerstin Denecke
Abstract

Content analysis and clustering of natural language documents becomes crucial in various domains, even in public health. Recent pandemics such as Swine Flu have caused concern for public health officials. Given the ever increasing pace at which infectious diseases can spread globally, officials must be prepared to react sooner and with greater epidemic intelligence gathering capabilities. Information should be gathered from a broader range of sources, including the Web which in turn requires more robust processing capabilities. To address this limitation, in this paper, we propose a new approach to detect public health events in an unsupervised manner. We address the problems associated with adapting an unsupervised learner to the medical domain and in doing so, propose an approach which combines aspects from different feature-based event detection methods. We evaluate our approach with a real world dataset with respect to the quality of article clusters. Our results show that we are able to achieve a precision of 62% and a recall of 75% evaluated using manually annotated, real-world data.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Deutsche Akademie der Technikwissenschaften (acatech)
Università della Calabria
Typ
Aufsatz in Konferenzband
Seiten
87-103
Anzahl der Seiten
17
Publikationsdatum
2011
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik, Allgemeine Computerwissenschaft
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1007/978-3-642-24583-1_10 (Zugang: Unbekannt)