Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields

verfasst von
Kinh Bac Dang, Benjamin Burkhard, Wilhelm Windhorst, Felix Müller
Abstract

Environmental stressors and population growth have significantly affected terraced rice ecosystems, such as in the Sapa district in northern Vietnam. The question arises how natural and socio-economic components determine the amount of rice yields. This study combines a hybrid neural-fuzzy inference system (HyFIS) with GIS-based methods to generate two models that can map suitability areas for rice cultivation at a regional scale and predict actual rice yields at a plot scale. Semi-structured interviews, the “Integrated Valuation of Ecosystem Services and Tradeoffs” tool and different statistical models were used to investigate the impacts of eight environmental variables and three socio-economic variables on rice production. Subsequently, two HyFIS models were trained with an accuracy higher than 88%. Because the predictive power values of the two proposed HyFIS models were higher than those of benchmark models, they are considered as useful tools to assess and optimize land use and related rice productivity.

Organisationseinheit(en)
Institut für Physische Geographie und Landschaftsökologie
Arbeitsgruppe Physische Geographie
Externe Organisation(en)
Christian-Albrechts-Universität zu Kiel (CAU)
Vietnam National University
Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.
Typ
Artikel
Journal
Environmental Modelling and Software
Band
114
Seiten
166-180
Anzahl der Seiten
15
ISSN
1364-8152
Publikationsdatum
04.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Environmental engineering, Ökologische Modellierung
Ziele für nachhaltige Entwicklung
SDG 15 – Lebensraum Land
Elektronische Version(en)
https://doi.org/10.1016/j.envsoft.2019.01.015 (Zugang: Geschlossen)