RAMP
stochastic simulation of user-driven energy demand time series
- verfasst von
- Francesco Lombardi, Pierre-François Duc, Mohammad Amin Tahavori, Claudia Sanchez-Solis, Sarah Eckhoff, Maria C. G. Hart, Francesco Davide Sanvito, Gregory Ireland, Sergio Balderrama, Johann Kraft, Gokarna Dhungel, Sylvain Quoilin
- Abstract
The urgency of the energy transition is leading to a rapid evolution of energy system design worldwide. In areas with widespread energy infrastructure, existing electricity, heat and mobility networks are being re-designed for carbon neutrality and are increasingly interconnected. In areas where energy infrastructure is limited, instead, networks and systems are being rapidly
expanded to ensure access to energy for all. In both cases, re-designing and expanding energy systems in these directions requires information on future user behaviour and associated energy demand, yet this type of data is often unavailable. In fact, historical data are often either entirely missing or poorly representative of future behaviour within transitioning systems. This results in reliance on inadequate demand data, which affects system design and its resilience to rapid behaviour evolution.- Organisationseinheit(en)
-
Institut für Wirtschaftsinformatik
- Externe Organisation(en)
-
Delft University of Technology
Reiner Lemoine Institut gGmbH (RLI)
Vlaamse Instelling voor Technologisch Onderzoek N.V. (VITO)
Université de Liège
Universidad Mayor de san Simon (UMSS)
Universität Kapstadt (UCT)
Hochschule Nordhausen
- Typ
- Artikel
- Journal
- J. Open Source Softw.
- Band
- 9
- Seiten
- 6418
- Anzahl der Seiten
- 4
- Publikationsdatum
- 12.06.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.21105/JOSS.06418 (Zugang:
Offen)