The application of image recognition methods to improve the performance of waste-to-energy plants
- verfasst von
- Fenja Schwark, Henriette Garmatter, Maria Davila, Lisa Dawel, Alexandra Pehlken, Fabian Cyris, Roland Scharf
- Abstract
In this paper, we present an image recognition method to improve the performance of waste-to-energy plants. Thermal treatment of waste in waste-to-energy plants is central for the treatment of municipal solid waste. The heterogeneous nature of municipal solid waste results in a fluctuating lower calorific value to which plant operation must be adapted. Compensating for drastic changes in the lower calorific value is challenging for plant operation and can require short-term interventions. Estimating the lower calorific value prior to the combustion process should reduce the number of short-term interventions. In this work, we propose a process-engineering approach to estimate the lower calorific value of waste as a new application of image recognition in waste-to-energy plants. The method is implemented using videos and sensor data from a case study in a real waste-to-energy plant in Germany.
- Organisationseinheit(en)
-
Institut für Kraftwerkstechnik und Wärmeübertragung
- Externe Organisation(en)
-
OFFIS - Institut für Informatik
EEW Energy from Waste GmbH
- Typ
- Aufsatz in Konferenzband
- Seiten
- 167-176
- Anzahl der Seiten
- 10
- Publikationsdatum
- 2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Angewandte Informatik
- Ziele für nachhaltige Entwicklung
- SDG 11 – Nachhaltige Städte und Gemeinschaften, SDG 12 – Verantwortungsvoller Konsum und Produktion
- Elektronische Version(en)
-
https://dl.gi.de/bitstream/handle/20.500.12116/39413/EnviroInfo2022_ShortPaper_26.pdf?sequence=1&isAllowed=y (Zugang:
Offen)