The application of image recognition methods to improve the performance of waste-to-energy plants

verfasst von
Fenja Schwark, Henriette Garmatter, Maria Davila, Lisa Dawel, Alexandra Pehlken, Fabian Cyris, Roland Scharf
Abstract

In this paper, we present an image recognition method to improve the performance of waste-to-energy plants. Thermal treatment of waste in waste-to-energy plants is central for the treatment of municipal solid waste. The heterogeneous nature of municipal solid waste results in a fluctuating lower calorific value to which plant operation must be adapted. Compensating for drastic changes in the lower calorific value is challenging for plant operation and can require short-term interventions. Estimating the lower calorific value prior to the combustion process should reduce the number of short-term interventions. In this work, we propose a process-engineering approach to estimate the lower calorific value of waste as a new application of image recognition in waste-to-energy plants. The method is implemented using videos and sensor data from a case study in a real waste-to-energy plant in Germany.

Organisationseinheit(en)
Institut für Kraftwerkstechnik und Wärmeübertragung
Externe Organisation(en)
OFFIS - Institut für Informatik
EEW Energy from Waste GmbH
Typ
Aufsatz in Konferenzband
Seiten
167-176
Anzahl der Seiten
10
Publikationsdatum
2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Angewandte Informatik
Ziele für nachhaltige Entwicklung
SDG 11 – Nachhaltige Städte und Gemeinschaften, SDG 12 – Verantwortungsvoller Konsum und Produktion
Elektronische Version(en)
https://dl.gi.de/bitstream/handle/20.500.12116/39413/EnviroInfo2022_ShortPaper_26.pdf?sequence=1&isAllowed=y (Zugang: Offen)