Hydrogen Crossover in PEM and Alkaline Water Electrolysis

Mechanisms, Direct Comparison and Mitigation Strategies

verfasst von
P. Trinke, P. Haug, J. Brauns, B. Bensmann, R. Hanke-Rauschenbach, Thomas Turek
Abstract

This study provides a direct comparison of hydrogen crossover in PEM (Nafion 117) and alkaline water electrolysis (Zirfon) at a temperature of 60?C applying state-of-the-art separating unit materials. To this end, occurring crossover mechanisms are described first, before experimental data of the anodic hydrogen content are shown in dependence of current density, system pressure and process management strategy. The results suggest that permeation in PEM electrolyzers is mainly governed by diffusion due to a supersaturated concentration of dissolved hydrogen within the catalyst layer, showing a share of 98% of the total permeation flux at 1Acm-2 and atmospheric pressure. Permeation in alkaline electrolyzers also exhibits a significant influence of supersaturation, but the overall crossover is mainly influenced by mixing the electrolyte cycles, which makes up a share of 90% at 0.7Acm-2 and 1 bar. Generally it becomes evident that hydrogen permeation across the separating unit is more than one order of magnitude smaller in alkaline electrolysis, which is mainly a consequence of the significantly lower hydrogen solubility in concentrated KOH electrolyte. Finally, this study concludes with an assessment of the impact of separating unit thickness and provides mitigation strategies to reduce hydrogen crossover.

Organisationseinheit(en)
Fachgebiet Elektrische Energiespeichersysteme
Externe Organisation(en)
Technische Universität Clausthal
Typ
Artikel
Journal
Journal of the Electrochemical Society
Band
165
Seiten
F502-F513
Anzahl der Seiten
12
ISSN
0013-4651
Publikationsdatum
16.05.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Oberflächen, Beschichtungen und Folien, Elektrochemie, Werkstoffchemie
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1149/2.0541807jes (Zugang: Geschlossen)