Improving the classification of land use objects using dense connectivity of convolutional neural networks

verfasst von
A. Gujrathi, C. Yang, F. Rottensteiner, K. M. Buddhiraju, C. Heipke
Abstract

Land use is an important variable in remote sensing which describes the functions carried out on a piece of land in order to obtain benefits and is especially useful to the personnel working in the fields of urban management and planning. The land use information is maintained by national mapping agencies in geo-spatial databases. Commonly, land use data is stored in the form of polygon objects; the label of the object indicates land use. The main goal of classification of land use objects is to update an existing database in an automatic process. Recently, Convolutional Neural Networks (CNN) have been widely used to tackle this task utilizing high resolution aerial images (and derived data such as digital surface model). One big challenge classifying polygons is to deal with the large variation in their geometrical extent. For this challenge, we adopt the method of Yang et al. (2019) to decompose polygons into regular patches of fixed size. The decomposition leads to two sets of polygons: small and large, where the former suffers from a lower identification rate. In this paper, we propose CNN methods which incorporate dense connectivity and integrate it with intermediate information via global average pooling to improve land use classification, mainly focusing on small polygons. We present different network variants by incorporating intermediate information via global average pooling from different stages of the network. We test our methods on two sites; our experiments show that the dense connectivity and integration of intermediate information has a positive effect not only on the classification accuracy on the whole but also on the identification of small polygons.

Organisationseinheit(en)
Institut für Photogrammetrie und Geoinformation
Externe Organisation(en)
Indian Institute of Technology Bombay (IITB)
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Band
43
Seiten
667-673
Anzahl der Seiten
7
ISSN
1682-1750
Publikationsdatum
12.08.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Information systems, Geografie, Planung und Entwicklung
Ziele für nachhaltige Entwicklung
SDG 15 – Lebensraum Land
Elektronische Version(en)
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-667-2020 (Zugang: Offen)