Income vulnerability of rural households in Bangladesh

a comparison between Bayesian and classical methods

verfasst von
Md Ershadul Islam, Ulrike Grote, Md Israt Rayhan
Abstract

The geographical location and the monsoon climate render Bangladesh highly vulnerable to natural hazards, deteriorating the country's socio-economic stability. This study is based on 500 randomly chosen rural households from the Household Income and Expenditure Survey [Bangladesh Bureau of Statistics, Planning Division, Ministry of Planning, Government of the People's Republic of Bangladesh, Dhaka, 2006]. The objectives are to estimate the income vulnerability of rural households and to check whether the Bayesian approaches (natural conjugate prior and non-informative prior estimates) have any superiority over the classical (feasible generalized least square (FGLS)) method. The poverty level, measured from the data, is 24%; whereas the vulnerability estimates, using FGLS, natural conjugate prior and non-informative prior are 31%, 69% and 82%, respectively. Vulnerability estimates by the Bayesian natural conjugate prior approach is found to have greater efficiency compared with FGLS and non-informative prior approaches.

Organisationseinheit(en)
Institut für Umweltökonomik und Welthandel
Externe Organisation(en)
University of Dhaka
Typ
Artikel
Journal
Journal of Statistical Computation and Simulation
Band
83
Seiten
1179-1187
Anzahl der Seiten
9
ISSN
0094-9655
Publikationsdatum
2013
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Statistik und Wahrscheinlichkeit, Modellierung und Simulation, Statistik, Wahrscheinlichkeit und Ungewissheit, Angewandte Mathematik
Ziele für nachhaltige Entwicklung
SDG 13 – Klimaschutzmaßnahmen
Elektronische Version(en)
https://doi.org/10.1080/00949655.2012.656310 (Zugang: Geschlossen)