Income vulnerability of rural households in Bangladesh
a comparison between Bayesian and classical methods
- verfasst von
- Md Ershadul Islam, Ulrike Grote, Md Israt Rayhan
- Abstract
The geographical location and the monsoon climate render Bangladesh highly vulnerable to natural hazards, deteriorating the country's socio-economic stability. This study is based on 500 randomly chosen rural households from the Household Income and Expenditure Survey [Bangladesh Bureau of Statistics, Planning Division, Ministry of Planning, Government of the People's Republic of Bangladesh, Dhaka, 2006]. The objectives are to estimate the income vulnerability of rural households and to check whether the Bayesian approaches (natural conjugate prior and non-informative prior estimates) have any superiority over the classical (feasible generalized least square (FGLS)) method. The poverty level, measured from the data, is 24%; whereas the vulnerability estimates, using FGLS, natural conjugate prior and non-informative prior are 31%, 69% and 82%, respectively. Vulnerability estimates by the Bayesian natural conjugate prior approach is found to have greater efficiency compared with FGLS and non-informative prior approaches.
- Organisationseinheit(en)
-
Institut für Umweltökonomik und Welthandel
- Externe Organisation(en)
-
University of Dhaka
- Typ
- Artikel
- Journal
- Journal of Statistical Computation and Simulation
- Band
- 83
- Seiten
- 1179-1187
- Anzahl der Seiten
- 9
- ISSN
- 0094-9655
- Publikationsdatum
- 2013
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Statistik und Wahrscheinlichkeit, Modellierung und Simulation, Statistik, Wahrscheinlichkeit und Ungewissheit, Angewandte Mathematik
- Ziele für nachhaltige Entwicklung
- SDG 13 – Klimaschutzmaßnahmen
- Elektronische Version(en)
-
https://doi.org/10.1080/00949655.2012.656310 (Zugang:
Geschlossen)