A Neighborhood-Augmented LSTM Model for Taxi-Passenger Demand Prediction

verfasst von
Tai Le Quy, Wolfgang Nejdl, Myra Spiliopoulou, Eirini Ntoutsi
Abstract

Taxi is a convenient means of transportation worldwide. Accurately predicting the taxi-demand is crucial for taxi-companies to effectively allocate their fleet to taxi-stands and reduce the waiting time for passengers thus increasing their overall satisfaction and customer retention. Nowadays precise information about taxi-rides is available and can be used to infer the taxi-passenger demand across different locations and time-points. In this paper, we propose an approach for predicting the pick-demand of a given taxi-stand, that takes into account not only the demand-history of the particular stand but it also considers information from neighboring stands. Our model is an LSTM neural network augmented with information from the spatial neighborhood of the stands. Experiments with two versions of the taxi demand dataset from the city of Porto, Portugal show that our approach can provide better predictions comparing to approaches that do not exploit the neighborhood.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Otto-von-Guericke-Universität Magdeburg
Typ
Aufsatz in Konferenzband
Seiten
100-116
Anzahl der Seiten
17
Publikationsdatum
04.01.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik, Informatik (insg.)
Ziele für nachhaltige Entwicklung
SDG 11 – Nachhaltige Städte und Gemeinschaften
Elektronische Version(en)
https://doi.org/10.1007/978-3-030-38081-6_8 (Zugang: Offen)