To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation

verfasst von
Maja Stahl, Maximilian Spliethöver, Henning Wachsmuth
Abstract

Gender bias may emerge from an unequal representation of agency and power, for example, by portraying women frequently as passive and powerless ("She accepted her future'') and men as proactive and powerful ("He chose his future''). When language models learn from respective texts, they may reproduce or even amplify the bias. An effective way to mitigate bias is to generate counterfactual sentences with opposite agency and power to the training. Recent work targeted agency-specific verbs from a lexicon to this end. We argue that this is insufficient, due to the interaction of agency and power and their dependence on context. In this paper, we thus develop a new rewriting model that identifies verbs with the desired agency and power in the context of the given sentence. The verbs' probability is then boosted to encourage the model to rewrite both connotations jointly. According to automatic metrics, our model effectively controls for power while being competitive in agency to the state of the art. In our evaluation, human annotators favored its counterfactuals in terms of both connotations, also deeming its meaning preservation better.

Organisationseinheit(en)
Fachgebiet Maschinelle Sprachverarbeitung
Institut für Künstliche Intelligenz
Typ
Aufsatz in Konferenzband
Seiten
39-51
Anzahl der Seiten
13
Publikationsdatum
11.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Informatik (sonstige), Sozialwissenschaften (insg.)
Ziele für nachhaltige Entwicklung
SDG 5 – Gleichberechtigung der Geschlechter, SDG 10 – Weniger Ungleichheiten
Elektronische Version(en)
https://aclanthology.org/2022.nlpcss-1.6/ (Zugang: Geschlossen)