Reviews and syntheses

How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)?

verfasst von
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, Antje Schwalb
Abstract

The Tibetan Plateau (TP) is the largest alpine plateau on Earth and plays an important role in global climate dynamics. On the TP, climate change is happening particularly fast, with an increase in air temperature twice the global average. The particular sensitivity of this high mountain environment allows observation and tracking of abiotic and biotic feedback mechanisms. Closed lake systems, such as Nam Co on the central TP, represent important natural laboratories for tracking past and recent climatic changes, as well as geobiological processes and interactions within their respective catchments. This review gives an interdisciplinary overview of past and modern environmental changes using Nam Co as a case study. In the catchment area, ongoing rise in air temperature forces glaciers to melt, contributing to a rise in lake level and changes in water chemistry. Some studies base their conclusions on inconsistent glacier inventories, but an ever-increasing deglaciation and thus higher water availability have persisted over the last few decades. Increasing water availability causes translocation of sediments, nutrients and dissolved organic matter to the lake, as well as higher carbon emissions to the atmosphere. The intensity of grazing has an additional and significant effect on <span classCombining double low line"inline-formula">CO2</span> fluxes, with moderate grazing enhancing belowground allocation of carbon while adversely affecting the C sink potential through reduction of above-surface and subsurface biomass at higher grazing intensities. Furthermore, increasing pressure from human activities and livestock grazing are enhancing grassland degradation processes, thus shaping biodiversity patterns in the lake and catchment. The environmental signal provided by taxon-specific analysis (e.g., diatoms and ostracods) in Nam Co revealed profound climatic fluctuations between warmer-cooler and wetter-drier periods since the late<span idCombining double low line"page1262"/> Pleistocene and an increasing input of freshwater and nutrients from the catchment in recent years. Based on the reviewed literature, we outline perspectives to further understand the effects of global warming on geodiversity and biodiversity and their interplay at Nam Co, which acts as a case study for potentially TP-level or even worldwide processes that are currently shaping high mountain areas.

Organisationseinheit(en)
Institut für Bodenkunde
Institut für Strömungsmechanik und Umweltphysik im Bauwesen
Externe Organisation(en)
Technische Universität Braunschweig
Max-Planck-Institut für Biogeochemie
Graduate University of Chinese Academy of Sciences
Friedrich-Schiller-Universität Jena
Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ)
Typ
Artikel
Journal
BIOGEOSCIENCES
Band
17
Seiten
1261-1279
Anzahl der Seiten
19
ISSN
1726-4170
Publikationsdatum
06.03.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Ökologie, Evolution, Verhaltenswissenschaften und Systematik, Erdoberflächenprozesse
Ziele für nachhaltige Entwicklung
SDG 13 – Klimaschutzmaßnahmen, SDG 15 – Lebensraum Land
Elektronische Version(en)
https://doi.org/10.5194/bg-17-1261-2020 (Zugang: Offen)