IASiS

Towards heterogeneous big data analysis for personalized medicine

verfasst von
Anastasia Krithara, Fotis Aisopos, Vassiliki Rentoumi, Anastasios Nentidis, Konstantinos Bougatiotis, Maria Esther Vidal, Ernestina Menasalvas, Alejandro Rodriguez-Gonzalez, Eleftherios Samaras, Peter Garrard, Maria Torrente, Mariano Provencio Pulla, Nikos Dimakopoulos, Rui Mauricio, Jordi Rambla De Argila, Gian Gaetano Tartaglia, George Paliouras
Abstract

The vision of IASIS project is to turn the wave of big biomedical data heading our way into actionable knowledge for decision makers. This is achieved by integrating data from disparate sources, including genomics, electronic health records and bibliography, and applying advanced analytics methods to discover useful patterns. The goal is to turn large amounts of available data into actionable information to authorities for planning public health activities and policies. The integration and analysis of these heterogeneous sources of information will enable the best decisions to be made, allowing for diagnosis and treatment to be personalised to each individual. The project offers a common representation schema for the heterogeneous data sources. The iASiS infrastructure is able to convert clinical notes into usable data, combine them with genomic data, related bibliography, image data and more, and create a global knowledge base. This facilitates the use of intelligent methods in order to discover useful patterns across different resources. Using semantic integration of data gives the opportunity to generate information that is rich, auditable and reliable. This information can be used to provide better care, reduce errors and create more confidence in sharing data, thus providing more insights and opportunities. Data resources for two different disease categories are explored within the iASiS use cases, dementia and lung cancer.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
National Centre For Scientific Research Demokritos (NCSR Demokritos)
Centro de Tecnología Biomédica (CTB)
St. George's University of London
Universidad Autónoma de Madrid (UAM)
Athens Technology Center S.A.
Alzheimer's Research UK
CRG - Centre for Genomic Regulation
Typ
Aufsatz in Konferenzband
Seiten
106-111
Anzahl der Seiten
6
Publikationsdatum
2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Radiologie, Nuklearmedizin und Bildgebung, Angewandte Informatik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1109/CBMS.2019.00032 (Zugang: Geschlossen)