Image analysis based on probabilistic models

verfasst von
Christian Heipke, Franz Rottensteiner
Abstract

This paper discusses random field based image classification methods, and in particular conditional random fields (CRF), for topographic mapping. A short review of the CRF principles reveals their main advantages, namely the possibility to incorporate local context into the classification to quantify the quality of the results in terms of probabilities. Three examples, the classification of point cloud data, multi-temporal and multi-scale classification of satellite images of different epochs and geometric resolution as well as the verification of existing land use data demonstrate the power and flexibility of CRF, but also its limitation in terms of capturing long range context. The paper closes with a short discussion on how to overcome this deficiency in the future.

Organisationseinheit(en)
Institut für Photogrammetrie und Geoinformation
Typ
Paper
Publikationsdatum
2015
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computernetzwerke und -kommunikation
Ziele für nachhaltige Entwicklung
SDG 15 – Lebensraum Land
Elektronische Version(en)
https://www.ipi.uni-hannover.de/fileadmin/ipi/publications/ACRS2015_Paper-ID_140.pdf (Zugang: Unbekannt)