Contextual land use classification

How detailed can the class structure be?

verfasst von
L. Albert, F. Rottensteiner, C. Heipke
Abstract

The goal of this paper is to investigate the maximum level of semantic resolution that can be achieved in an automated land use change detection process based on mono-temporal, multi-spectral, high-resolution aerial image data. For this purpose, we perform a step-wise refinement of the land use classes that follows the hierarchical structure of most object catalogues for land use databases. The investigation is based on our previous work for the simultaneous contextual classification of aerial imagery to determine land cover and land use. Land cover is determined at the level of small image segments. Land use classification is applied to objects from the geospatial database. Experiments are carried out on two test areas with different characteristics and are intended to evaluate the step-wise refinement of the land use classes empirically. The experiments show that a semantic resolution of ten classes still delivers acceptable results, where the accuracy of the results depends on the characteristics of the test areas used. Furthermore, we confirm that the incorporation of contextual knowledge, especially in the form of contextual features, is beneficial for land use classification.

Organisationseinheit(en)
Institut für Photogrammetrie und Geoinformation
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Band
41
Seiten
11-18
Anzahl der Seiten
8
ISSN
1682-1750
Publikationsdatum
2016
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Information systems, Geografie, Planung und Entwicklung
Ziele für nachhaltige Entwicklung
SDG 15 – Lebensraum Land
Elektronische Version(en)
https://doi.org/10.5194/isprsarchives-XLI-B4-11-2016 (Zugang: Offen)