21.0%-efficient screen-printed n-PERT back-junction silicon solar cell with plasma-deposited boron diffusion source

verfasst von
Nadine Wehmeier, Anja Nowack, Bianca Lim, Till Brendemuhl, Sarah Kajari-Schröder, Jan Schmidt, Rolf Brendel, Thorsten Dullweber
Abstract

The manufacturing process of Passivated Emitter and Rear Totally diffused (PERT) solar cells on n-type crystalline silicon is significantly simplified by applying multifunctional layer stacks acting as diffusion source, etching and diffusion barrier. We apply boron silicate glasses (BSG) capped with silicon nitride (SiN

z) layers that are deposited by means of plasma enhanced chemical vapor deposition (PECVD). Optimum PECVD deposition parameters for the BSG layer such as the gas flow ratio of the precursor gases silane and diborane SiH

4/B

2H

6=8% and the layer thickness of 40 nm result in a boron diffusion with saturation current density J

0,B below 10 fA/cm

2 applying an AlO

x/SiN

y passivation and firing. The PECVD BSG diffusion source is integrated into the n-type PERT back junction (BJ) solar cell process with screen-printed front and rear contacts. The only high temperature step is a POCl

3 co-diffusion for the formation of the boron emitter from the PECVD BSG layer and for the formation of the phosphorus-doped front surface field (FSF). An independently confirmed energy conversion efficiency of 21.0% is achieved for a 156×156 mm

2 large n-PERT BJ cell with this simplified process flow. This is the highest efficiency reported for a large-area co-diffused n-type PERT BJ solar cell using a PECVD BSG as diffusion source. For comparison, reference n-type PERT BJ cells with separate POCl

3 and BBr

3 diffusions reach an efficiency of 21.2% in our lab. A synergistic efficiency gain analysis (SEGA) for the co-diffused n-PERT BJ cell shows that the main possible efficiency gain of 1.1%

abs. originates from recombination in the phosphorus-diffused front surface field while the PECVD BSG boron-doped emitter accounts for only 0.1%

abs. efficiency gain. We evaluate the use of the PECVD BSG/SiN

z stack as a rear side passivation as a replacement of the AlO

x/SiN

y stack in order to further simplify the process flow. We obtain J

0,B values of 40 fA/cm

2, an implied open-circuit voltage of 682 mV and a simulated n-PERT BJ cell efficiency of 21.1%.

Organisationseinheit(en)
Institut für Festkörperphysik
Abt. Solarenergie
Externe Organisation(en)
Institut für Solarenergieforschung GmbH (ISFH)
Typ
Artikel
Journal
Solar Energy Materials and Solar Cells
Band
158
Seiten
50-54
Anzahl der Seiten
5
ISSN
0927-0248
Publikationsdatum
12.2016
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Oberflächen, Beschichtungen und Folien
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.solmat.2016.05.054 (Zugang: Geschlossen)