Supporting temporal analytics for health-related events in microblogs
- verfasst von
- Nattiya Kanhabua, Avaré Stewart, Wolfgang Nejdl, Sara Romano
- Abstract
Microblogging services, such as Twitter, are gaining interests as a means of sharing information in social networks. Numerous works have shown the potential of using Twitter posts (or tweets) in order to infer the existence and magnitude of real-world events. In the medical domain, there has been a surge in detecting public health related tweets for early warning so that a rapid response from health authorities can take place. In this paper, we present a temporal analytics tool for supporting a comparative, temporal analysis of disease outbreaks between Twitter and official sources, such as, World Health Organization (WHO) and ProMED-mail. We automatically extract and aggregate outbreak events from official outbreak reports, producing time series data. Our tool can support a correlation analysis and an understanding of the temporal developments of outbreak mentions in Twitter, based on comparisons with official sources.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Università degli Studi di Napoli Federico II
- Typ
- Aufsatz in Konferenzband
- Seiten
- 2686-2688
- Anzahl der Seiten
- 3
- Publikationsdatum
- 29.10.2012
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Software, Mensch-Maschine-Interaktion, Maschinelles Sehen und Mustererkennung, Computernetzwerke und -kommunikation
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://doi.org/10.1145/2396761.2398726 (Zugang:
Unbekannt)