Supporting temporal analytics for health-related events in microblogs

verfasst von
Nattiya Kanhabua, Avaré Stewart, Wolfgang Nejdl, Sara Romano
Abstract

Microblogging services, such as Twitter, are gaining interests as a means of sharing information in social networks. Numerous works have shown the potential of using Twitter posts (or tweets) in order to infer the existence and magnitude of real-world events. In the medical domain, there has been a surge in detecting public health related tweets for early warning so that a rapid response from health authorities can take place. In this paper, we present a temporal analytics tool for supporting a comparative, temporal analysis of disease outbreaks between Twitter and official sources, such as, World Health Organization (WHO) and ProMED-mail. We automatically extract and aggregate outbreak events from official outbreak reports, producing time series data. Our tool can support a correlation analysis and an understanding of the temporal developments of outbreak mentions in Twitter, based on comparisons with official sources.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Università degli Studi di Napoli Federico II
Typ
Aufsatz in Konferenzband
Seiten
2686-2688
Anzahl der Seiten
3
Publikationsdatum
29.10.2012
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Mensch-Maschine-Interaktion, Maschinelles Sehen und Mustererkennung, Computernetzwerke und -kommunikation
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1145/2396761.2398726 (Zugang: Unbekannt)