Global existence of classical solutions and numerical simulations of a cancer invasion model
- verfasst von
- Mario Fuest, Shahin Heydari, Petr Knobloch, Johannes Lankeit, Thomas Wick
- Abstract
In this paper, we study a cancer invasion model both theoretically and numerically. The model is a nonstationary, nonlinear system of three coupled partial differential equations modeling the motion of cancer cells, degradation of the extracellular matrix, and certain enzymes. We first establish existence of global classical solutions in both two- and three-dimensional bounded domains, despite the lack of diffusion of the matrix-degrading enzymes and corresponding regularizing effects in the analytical treatment. Next, we give a weak formulation and apply finite differences in time and a Galerkin finite element scheme for spatial discretization. The overall algorithm is based on a fixed-point iteration scheme. Our theory and numerical developments are accompanied by some simulations in two and three spatial dimensions.
- Organisationseinheit(en)
-
Institut für Angewandte Mathematik
- Externe Organisation(en)
-
Charles University
- Typ
- Artikel
- Journal
- ESAIM: Mathematical Modelling and Numerical Analysis
- Band
- 57
- Seiten
- 1893-1919
- Anzahl der Seiten
- 27
- ISSN
- 2822-7840
- Publikationsdatum
- 03.07.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Numerische Mathematik, Modellierung und Simulation, Computational Mathematics, Angewandte Mathematik
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2205.08168 (Zugang:
Offen)
https://doi.org/10.1051/m2an/2023037 (Zugang: Offen)