Global existence of classical solutions and numerical simulations of a cancer invasion model

verfasst von
Mario Fuest, Shahin Heydari, Petr Knobloch, Johannes Lankeit, Thomas Wick
Abstract

In this paper, we study a cancer invasion model both theoretically and numerically. The model is a nonstationary, nonlinear system of three coupled partial differential equations modeling the motion of cancer cells, degradation of the extracellular matrix, and certain enzymes. We first establish existence of global classical solutions in both two- and three-dimensional bounded domains, despite the lack of diffusion of the matrix-degrading enzymes and corresponding regularizing effects in the analytical treatment. Next, we give a weak formulation and apply finite differences in time and a Galerkin finite element scheme for spatial discretization. The overall algorithm is based on a fixed-point iteration scheme. Our theory and numerical developments are accompanied by some simulations in two and three spatial dimensions.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Charles University
Typ
Artikel
Journal
ESAIM: Mathematical Modelling and Numerical Analysis
Band
57
Seiten
1893-1919
Anzahl der Seiten
27
ISSN
2822-7840
Publikationsdatum
03.07.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Numerische Mathematik, Modellierung und Simulation, Computational Mathematics, Angewandte Mathematik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2205.08168 (Zugang: Offen)
https://doi.org/10.1051/m2an/2023037 (Zugang: Offen)