Early-stage design support combining machine learning and building information modelling

verfasst von
Manav Mahan Singh, Chirag Deb, Philipp Geyer
Abstract

Global energy concerns necessitate designing energy-efficient buildings. Many important decisions affecting energy performance are made at early stages with little information. Dynamic simulations support informed decision-making; however, uncertainty, high computational time, and expensive modelling efforts impair their use at early stages. This article develops an approach using building information modelling and machine learning that provides quick energy performance information. This approach has been implemented into a web tool, p-energyanalysis.de. It allows design space exploration, assesses the energy performance of design options, compares multiple options, performs sensitivity analysis, and tracks changes. Twenty-one participants (researchers and architects) used it as a support tool for designing an energy-efficient building. Their feedbacks are discussed as part of the tool development. The study found that the tool supports early-stage design decisions by quickly providing relevant information. The limitations, such as the bias in the results towards training data population and implementation issues, are also discussed.

Organisationseinheit(en)
Institut für Entwerfen und Konstruieren
Externe Organisation(en)
KU Leuven
Indian Institute of Technology Bombay (IITB)
ETH Zürich
Typ
Artikel
Journal
Automation in construction
Band
136
ISSN
0926-5805
Publikationsdatum
04.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Tief- und Ingenieurbau, Bauwesen
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.autcon.2022.104147 (Zugang: Geschlossen)