TIB-VA at SemEval-2022 Task 5
A Multimodal Architecture for the Detection and Classification of Misogynous Memes
- verfasst von
- Sherzod Hakimov, Gullal S. Cheema, Ralph Ewerth
- Abstract
The detection of offensive, hateful content on social media is a challenging problem that affects many online users on a daily basis. Hateful content is often used to target a group of people based on ethnicity, gender, religion and other factors. The hate or contempt toward women has been increasing on social platforms. Misogynous content detection is especially challenging when textual and visual modalities are combined to form a single context, e.g., an overlay text embedded on top of an image, also known as meme. In this paper, we present a multimodal architecture that combines textual and visual features to detect misogynous memes. The proposed architecture is evaluated in the SemEval-2022 Task 5: MAMI - Multimedia Automatic Misogyny Identification challenge under the team name TIB-VA. We obtained the best result in the Task-B where the challenge is to classify whether a given document is misogynous and further identify the following sub-classes: shaming, stereotype, objectification, and violence.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 756-760
- Anzahl der Seiten
- 5
- Publikationsdatum
- 07.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Theoretische Informatik und Mathematik, Angewandte Informatik, Theoretische Informatik
- Ziele für nachhaltige Entwicklung
- SDG 5 – Gleichberechtigung der Geschlechter, SDG 16 – Frieden, Gerechtigkeit und starke Institutionen
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2204.06299 (Zugang:
Offen)
https://doi.org/10.18653/v1/2022.semeval-1.105 (Zugang: Offen)