TIB-VA at SemEval-2022 Task 5

A Multimodal Architecture for the Detection and Classification of Misogynous Memes

verfasst von
Sherzod Hakimov, Gullal S. Cheema, Ralph Ewerth
Abstract

The detection of offensive, hateful content on social media is a challenging problem that affects many online users on a daily basis. Hateful content is often used to target a group of people based on ethnicity, gender, religion and other factors. The hate or contempt toward women has been increasing on social platforms. Misogynous content detection is especially challenging when textual and visual modalities are combined to form a single context, e.g., an overlay text embedded on top of an image, also known as meme. In this paper, we present a multimodal architecture that combines textual and visual features to detect misogynous memes. The proposed architecture is evaluated in the SemEval-2022 Task 5: MAMI - Multimedia Automatic Misogyny Identification challenge under the team name TIB-VA. We obtained the best result in the Task-B where the challenge is to classify whether a given document is misogynous and further identify the following sub-classes: shaming, stereotype, objectification, and violence.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Aufsatz in Konferenzband
Seiten
756-760
Anzahl der Seiten
5
Publikationsdatum
07.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik und Mathematik, Angewandte Informatik, Theoretische Informatik
Ziele für nachhaltige Entwicklung
SDG 5 – Gleichberechtigung der Geschlechter, SDG 16 – Frieden, Gerechtigkeit und starke Institutionen
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2204.06299 (Zugang: Offen)
https://doi.org/10.18653/v1/2022.semeval-1.105 (Zugang: Offen)