Predicting and visualizing traffic congestion in the presence of planned special events

verfasst von
Simon Kwoczek, Sergio Di Martino, Wolfgang Nejdl
Abstract

The recent availability of datasets on transportation networks with higher spatial and temporal resolution is enabling new research activities in the fields of Territorial Intelligence and Smart Cities. Among these, many research efforts are aimed at predicting traffic congestions to alleviate their negative effects on society, mainly by learning recurring mobility patterns. Within this field, in this paper we propose an integrated solution to predict and visualize non-recurring traffic congestion in urban environments caused by Planned Special Events (PSE), such as a soccer game or a concert. Predictions are done by means of two Machine Learning-based techniques. These have been proven to successfully outperform current state of the art predictions by 35% in an empirical assessment we conducted over a time frame of 7 months within the inner city of Cologne, Germany. The predicted congestions are fed into a specifically conceived visualization tool we designed to allow Decision Makers to evaluate the situation and take actions to improve mobility.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Volkswagen AG
Typ
Artikel
Journal
Journal of Visual Languages and Computing
Band
25
Seiten
973-980
Anzahl der Seiten
8
ISSN
1045-926X
Publikationsdatum
07.11.2014
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Sprache und Linguistik, Mensch-Maschine-Interaktion, Angewandte Informatik
Ziele für nachhaltige Entwicklung
SDG 9 – Industrie, Innovation und Infrastruktur, SDG 11 – Nachhaltige Städte und Gemeinschaften
Elektronische Version(en)
https://doi.org/10.1016/j.jvlc.2014.10.028 (Zugang: Geschlossen)