A new CO2-resistant Ruddlesden-Popper oxide with superior oxygen transport

A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ

verfasst von
Jian Xue, Qing Liao, Wei Chen, Henny J.M. Bouwmeester, Haihui Wang, Armin Feldhoff
Abstract

A-site deficient (Pr0.9La0.1)1.9Ni0.74Cu0.21Ga0.05O4+δ ((PL)1.9NCG), with the K2NiF4 structure, is found to exhibit higher oxygen transport rates compared with its cation-stoichiometric parent phase. A stable oxygen permeation flux of 4.6 × 10-7 mol cm-2 s-1 at 900 °C at a membrane thickness of 0.6 mm is measured, using either helium or pure CO2 as sweep gas at a flow rate of 30 mL min-1. The oxygen flux is more than two times higher than that observed through A-site stoichiometric (PL)2.0NCG membranes operated under similar conditions. The high oxygen transport rates found for (PL)1.9NCG are attributed to highly mobile oxygen vacancies, compensating A-site deficiency. The high stability against carbonation gives (PL)1.9NCG potential for use, e.g., as a membrane in oxy-fuel combustion processes with CO2 capture.

Organisationseinheit(en)
Institut für Physikalische Chemie und Elektrochemie
Externe Organisation(en)
South China University of Technology
University of Twente
University of Adelaide
Typ
Artikel
Journal
Journal of Materials Chemistry A
Band
3
Seiten
19107-19114
Anzahl der Seiten
8
ISSN
2050-7488
Publikationsdatum
10.08.2015
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Chemie, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Allgemeine Materialwissenschaften
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://www.repo.uni-hannover.de/bitstream/123456789/152/1/c5ta02514a.pdf (Zugang: Offen)
https://doi.org/10.1039/c5ta02514a (Zugang: Geschlossen)