Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity
- verfasst von
- Hafeez Yusuf Hafeez, Sandeep Kumar Lakhera, Sankeerthana Bellamkonda, G.Ranga Rao, M.V. Shankar, Detlef Bahnemann, Bernaurdshaw Neppolian
- Abstract
Reduced graphene oxide (rGO) supported g-C
3N
4-TiO
2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C
3N
4 to TiO
2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV– vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C
3N
4-TiO
2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C
3N
4. It was found that g-C
3N
4 and TiO
2 in a mass ratio of 70:30 in the g-C
3N
4-TiO
2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g
−1h
−1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C
3N
4-TiO
2/rGO was found to be 78 and 2.5 times higher than g-C
3N
4 (296 μmol g
−1 h
−1) and TiO
2 (11,954 μmol g
−1 h
−1), respectively. A direct contact between TiO
2 and rGO in the g-C
3N
4-TiO
2/rGO nanocomposite produces an additional 10,500 μmol g
−1h
−1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C
3N
4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C
3N
4-TiO
2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C
3N
4-TiO
2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C
3N
4 and TiO
2 based photocatalysts.
- Organisationseinheit(en)
-
Institut für Technische Chemie
- Externe Organisation(en)
-
SRM University
Indian Institute of Technology Madras (IITM)
Yogi Vamena University (YVU)
- Typ
- Artikel
- Journal
- International Journal of Hydrogen Energy
- Band
- 43
- Seiten
- 3892-3904
- Anzahl der Seiten
- 13
- ISSN
- 0360-3199
- Publikationsdatum
- 22.02.2018
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Erneuerbare Energien, Nachhaltigkeit und Umwelt, Feuerungstechnik, Physik der kondensierten Materie, Energieanlagenbau und Kraftwerkstechnik
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.1016/j.ijhydene.2017.09.048 (Zugang:
Geschlossen)