A simple method for pinhole detection in carrier selective POLO-junctions for high efficiency silicon solar cells

verfasst von
D. Tetzlaff, J. Krügener, Y. Larionova, S. Reiter, M. Turcu, F. Haase, R. Brendel, R. Peibst, U. Höhne, J. D. Kähler, T. F. Wietler
Abstract

Polycrystalline silicon (poly-Si) layers on thin silicon oxide films have received strong research interest as they form excellent carrier selective junctions on crystalline silicon substrates after appropriate thermal processing. Recently, we presented a new method to determine the pinhole density in interfacial oxide films of poly-Si on oxide (POLO)-junctions with excellent electrical properties. The concept of magnification of nanometer-size pinholes in the interfacial oxide by selective etching of the underlying crystalline silicon is used to investigate the influence of annealing temperature on pinhole densities. Eventually, the pinholes are detected by optical microscopy and scanning electron microscopy. We present results on the pinhole density in POLO-junctions with J0 values as low as 1.4 fA/cm2. The stability of this method is demonstrated by proving that no new holes are introduced to the oxide during the etching procedure for a wide range of etching times. Finally, we show the applicability to multiple oxide types and thickness values, differently doped poly-Si layers as well as several types of wafer surface morphologies. For wet chemically grown oxides, we verified the existence of pinholes with an areal density of 2×107 cm−2 even already after annealing at a temperature of 750 °C (lower than the optimum annealing temperature for these junctions).

Organisationseinheit(en)
Institut für Materialien und Bauelemente der Elektronik
Institut für Festkörperphysik
Laboratorium für Nano- und Quantenengineering
Externe Organisation(en)
Institut für Solarenergieforschung GmbH (ISFH)
Centrotherm
Typ
Artikel
Journal
Solar Energy Materials and Solar Cells
Band
173
Seiten
106-110
Anzahl der Seiten
5
ISSN
0927-0248
Publikationsdatum
12.2017
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Oberflächen, Beschichtungen und Folien
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.solmat.2017.05.041 (Zugang: Geschlossen)